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Subadditivity of States on Quantum Logics 

J o s e f  T k a d l e c  t 
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We give various definitions of subadditivity of states on quantum logics and 
present several results stating when a quantum logic with sufficiently enough 
"properly subadditive" states has to be (almost) a Boolean algebra. 

1. INTR ODUC TION 

Various forms of subadditivity of states on quantum logics play important 
roles in quantum structure theories. The significance of Jauch-Piron states 
is fully accepted [see, e.g., Pt~k (1993) for recent results]. The importance 
of subadditive states is advocated, e.g., by Pulmannov~ and Majern~ (1992) 
in connection with Bell inequalities. 

In the present paper we give an original proof of the equivalence of 
some notions of subadditivity in lattice quantum logics. For partial results, 
alternative proofs, and other notions of subadditivity see, e.g., B irkhoff (1948), 
Rie~anov~ (1988), Pulmannovfi and Majern& (1992), Pulmannov~ (1993), 
and Ptfik and Pulmannov~ (1994). 

We concentrate our attention on the following question: When does a 
quantum logic with sufficiently enough "properly subadditive" states have 
to be (almost) a Boolean algebra? This question can be restated also in the 
opposite way: What can we not expect from a quantum logic, should it 
be nonclassical? 

This question has been involved in many papers; see, e.g., R~ttimann 
(1977), Bunce et al. (1985), Navara and Ptfik (1989), Rogalewicz (1991), 
MUller et al. (1992), Pulmannov~ and Majern~ (1992), Pulmannovfi (1993), 
and Pt~k and Pulmannovfi (1994) for positive results and, e.g., Ovchinnikov 
(1993) and Mailer (1993) for counterexamples. 
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2. B A S I C  N O T I O N S  

Definition 2.1. A quantum logic is a structure (L, --, ', 0, 1) fulfilling 
the following conditions: 

(1) -< is a partial ordering on L with a least and a greatest element, 
0, 1, respectively. 

(2) ': L - ~  L is a unary mapping on L with (a ' ) '  -- a for any a ~ L. 
(3) If  a, b E L and a ---< b, then b'  --< a ' .  
(4) If  a, b E L and a -< b ' ,  then the supremum a v b exists in L. 
(5) If a, b s L and a <- b, then there is an element c ~ L such that 

c - a '  and b = a v c (the orthomodular  law). 

The operation ' is called the orthocornplementation; elements a, b of  a 
quantum logic are called orthogonal (denoted by a / b) if a -< b ' .  

The element c of  condition (5) is called the relative orthocomplernent 
of a in b and can be expressed as (a v b ' ) '  = a '  A b. In fact, the or thomodular  
law says that if we restrict ourselves only to elements of  L less than or equal 
to a given b E L\{0},  then we obtain a quantum logic again. 

A quantum logic is sometimes called an orthomodular  poset and a lattice 
quantum logic (i.e., a quantum logic that is a lattice with respect to the given 
partial ordering) is sometimes called an orthomodular  lattice. 

Definition 2.2. A state on a quantum logic L is a mapping s: L ---> 
[0, 1] such that: 

(1) s ( 1 ) :  1. 
(2) s(a v b) = s(a) + s(b) whenever  a, b ~ L and a J_ b. 

A two-valued state is a state with values in {0, 1}. 

3. S U B A D D I T I V I T Y  O F  STATES O N  L A T T I C E  Q U A N T U M  
L O G I C S  

Many different notions (under various names) o f  subadditivity of  states 
on lattice quantum logics have appeared in the literature. Let us add another 
notion and give a new proof  o f  the equivalence of  some of  them. 

Definition 3.1. Let L be a lattice quantum logic. A state s on L is called: 
Weakly subadditive if 
(1) s(a) + s(b) >- s(a v b) for any a, b E L with a A b = 0 
Subadditive if 
(2) s(a) + s(b) >- s(a v b) for any a, b E L 
Strongly subadditive if 
(3) s(a) + s(b) >- s(a v b) + s(a A b) for any a, b ~ L 
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A va lua t ion  if 
(4) s(a)  + s(b)  = s(a v b)  + s(a A b) for any a, b E L 
A w e a k  va luat ion  if 
(5) s(a)  + s(b)  = s(a v b) for any a, b ~ L with a A b = 0 

Propos i t ion  3.2. All the notions of subadditivity of  a state in Definition 
3.1 are equivalent. 

P r o o f  Let us denote by L the quantum logic in question. It is easy to 
see that the following implications hold: (4) ~ (3) ~ (2) ~ (1), (4) ~ (5) 

(1). It remains to prove the following two implications: 
(3) ~ (4): For any a, b ~ L we obtain [using the condition (3) for a ' ,  

b '  e L ]  

s(a)  + s(b)  = 1 - s (a ' )  + 1 - s (b ' )  <- 2 - s(a '  v b ' )  - s(a '  A b ' )  

= s ( a / x b )  + s ( a v b )  

Since the reverse inequality is also valid, we obtain the desired equality. 
(1) ~ (3): Let a, b ~ L and let us denote by al (bl, resp.) the relative 

orthocomplement of a /x  b in a (b, resp.). Since al A bt = 0, (al v hi) • (a 
A b), and (al v b l) v (a A b) = a v b, we obtain 

s(a)  + s(b)  = s (aO + s(a /x b) + s (bO + s ( a / x  b) 

>>- s(al  v bl)  + 2s(a  A b) = s(a v b) + s(a A b) II 

4. S U B A D D I T I V I T Y  OF STATES ON N O N L A T T I C E  
Q U A N T U M  L O G I C S  

The situation on nonlattice quantum logics is more complicated. While 
it is natural to replace a v b by the existence of some c -> a, b in conditions 
(1)-(3)  in Definition 3.1, this replacement in conditions (4) and (5) and an 
analogous replacement of a ^ b (by the existence of some d <-- a, b) does 
not seem to be a good general izat ion--the element d (c, resp.) is allowed to 
be arbitrarily small (great, resp.). It seems that, e.g., the right generalization 
of a valuation could be described by the following limit condition: 

s(a) + s(b)  = inf{s(c); c E L, c --> a, b} + sup{s(d); d ~ L, d --< a, b} 

Moreover, it might be reasonable to suppose that the above infimum and 
supremum are (or are arbitrarily near with the equality valid) attained. 

Another approach can make use of  the fact that in the lattice case there 
is a suitable (from the point of  view of values of states) uniform upper (lower, 
resp.) bound. 
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Definition 4.1. Let L be a quantum logic.  A state s on L is ca l led  
subadditive i f  for any a, b e L the fo l lowing  condi t ion holds: 

(S) There  is an e lement  c ~ L such that c - a, b and s(a) + s(b) ~ s(c). 

Further, a state s on L is called: 

Jauch-P i ron  if the condi t ion (S) holds for any a, b ~ L with a, b ~ s -  1(0). 
1-Subadditive i f  the condit ion (S) holds for any a, b E L with a v b = 

1, i.e., i f  s(a) + s(b) -> 1 for any a, b E L with a v b = 1. 

We say that a set S of  (not necessar i ly  all) states on L is a set o f  uniformly 
subadditive states if  for any a, b ~ L there is an e lement  c ~ L such that 
c -> a, b and s(a) + s(b) >- s(c) for any s ~ S. 

It is easy to see that the above  def ini t ion extends Defini t ion 3.1. The 
fo l lowing observat ions  will  be useful in the next  section. 

Lemma 4.2. 1. Let  s be a subaddi t ive  state on a quantum logic L. Then 
for any a, b ~ L there is a d E L with d - a, b such that s(a) + s(b) <- 
s(d) + 1. 

2. Let  s be a 1-subaddit ive state on a quantum logic L. Then s(a) + 
s(b) ~ 1 for a n y a ,  b ~ L w i t h a A b  = 0. 

Proof  1. L e t a ,  b E L a n d  let us take a ' , b '  ~ L. Accord ing  to the 
subaddi t iv i ty  o f s  there is a d '  E L with d '  -> a ' ,  b '  such that s(a')  + s(b')  
>- s(d ' ) .  Thus, d <- a, b and s(a) + s(b) = 2 - s(a')  - s(b')  <- 2 - s (d ' )  
= s(d)  + 1. 

2. The p roof  is analogous to that of  part  1. �9 

Lemma 4.3. Every  subaddi t ive  state on a quantum logic is J a uc h -P i ron .  
Every  two-va lued  J a u c h - P i r o n  state on a quantum logic is subaddi t ive.  

Proof  The first part  is obvious.  Let  L be a quantum logic, s be a two- 
valued J a u c h - P i r o n  state on L, and let a, b ~ L. I f  s(a) = s(b) = 0, we can 
use the Jauch-P i ronness .  If  s(a) 4 ~ 0 or s(b) ~ O, then s(a) + s(b) >- 1 
= s(1). �9 

Before  stating the last observat ion,  let us define what  "suff ic ient ly"  
enough states usual ly means. 

Definition 4.4. A set S of  (not necessar i ly  all) states on a quantum logic 
L is cal led:  

Unital if  for any a ~ L\{O} there is a state s E S with s(a)  = 1. 
Full if  for any a, b ~ L with a :~ b there is a state s ~ S with s(b) < s(a). 

It is easy to see that a full set of  two-va lued  states is unital.  
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Lemma 4.5. Let S be a full set of states on a quantum logic L. Let a, b 
E L such that s(a) + s(b) -< 1 for any s ~ S. Then a and b are orthogonal. 

Proof  Leta ,  b ~ L w i t h a  • b. Then a : ~  b' and there i s a s t a t e s  E 
S with s(a) + s(b) > s(b') + s(b) = 1. �9 

Now, let us present the main result of this section, which shows that 
the result of Ptfik and Pulmannov~ (1994) is a corollary of the result of 
Pulmannovfi and Majern~ (1992). 

Proposition 4.6. A unital set of uniformly subadditive states on a quantum 
logic is full. 

Proof  Let L be a quantum logic with a unital set S of uniformly subaddi- 
tive states and let a ~ b. According to Lemma 4.2, there is a d ~ L with d 
--< a, b such that s(a) + s(b) <- s(d) + 1 for any s E S. Let al be the relative 
orthocomplement of d in a. Since a ~ b, we have al 4= 0. Thus, there is a 
state sl E S with sl(al) = 1. Hence, sl(d) = O, sl(a) = 1, and, since sl(b) 
<-- s l (d)  + 1 - sl(a), sl(b) = O. �9 

Let us note that for any pair a, b E L with a ~ b we have found a state 
s ~ S with the property 1 = s(a) > s(b) = 0, thus the set S is more than full. 

5. W H E N  A QUANTUM L O G I C  HAS TO BE A B O O L E A N  
A L G E B R A  

To prove that a quantum logic is a Boolean algebra we will make use 
of the following proposition. 

Proposition 5. I. A quantum logic L is a Boolean algebra iff any pair of 
its elements is compatible, i.e., for any a, b ~ L there are mutually orthogonal 
elements al, bl, d ~ L such that a = a~ v d and b = b~ v d. 

Proof  See, e.g., Ptfik and Pulmannov~i (1991). �9 

Theorem 5.2. A quantum logic with a full set of uniformly subadditive 
states is a Boolean algebra. 

Proof  Let L be a quantum logic with a full set S of uniformly subadditive 
states and let a, b E L. According to Lemma 4.2, there is a d ~ L with d 
--< a, b such that s(a) + s(b) <~ s(d) + 1 for any s E S. Let us denote by 
al (b~, resp.) the relative orthocomplement of d in a (b, resp.). Then s(al) + 
s(bl) = s(a) + s(b) - 2s(d) --< I and therefore, according to Lemma 4.5, 
the elements a~, b~, d are mutually orthogonal. �9 

Now, let us give a definition of a Boolean quantum logic [for properties 
of Boolean quantum logics see, e.g., Tkadlec (1993)] and recall that a Boolean 
lattice quantum logic is a Boolean algebra. 
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Definition 5.3. A quantum logic L is called Boolean if a _1_ b for any 
pa i r a ,  b ~ L w i t h a / x b  = 0. 

Proposition 5.4. A quantum logic with a full set of  1-subadditive states 
is Boolean. 

Proof Let L be a quantum logic with a full set S of  1-subadditive states. 
Let a, b ~ L with a / x  b = 0. Then, according to Lemma 4.2, s(a) + s(b) 

I for any s ~ S. Hence, according to Lemma 4.5, a and b are orthogonal. [] 

Corollary. 5.5. A lattice quantum logic with a full set of  1-subadditive 
states is a Boolean algebra. 

Theorem 5.2 and Corollary 5.5 generalize the result of  Pulmannov4 and 
Maje rn~  (1992) that was stated for a lattice quantum logic with a full set 
of  subadditive states. 

The last theorem we present here generalizes the result of  MUller et 
al. (1992). 

Theorem 5.6. Let L be a quantum logic and let the following condi- 
tions hold: 

(1) L has a unital set of  1-subadditive states. 
(2) L has a countable unital set of  states. 
(3) Every state on L is Jauch-Pi ron .  

Then L is a Boolean algebra. 

Before we proceed to the proof  o f  Theorem 5.6, let us give a pair 
of  lemmas. 

Lemma 5. 7. Let L be a quantum logic with a unital set o f  1-subadditive 
states and let a, b E L be such that a /x  b = 0 and a /x  b'  = 0. Then a = 0. 

Proof Let us suppose that a ~ 0. Then there is a l-subadditive state s 
on L such that s(a) = 1. According to Lemma 4.2, s(a) + s(b) --- 1 and s(a) 
+ s(b') <- I. Thus, 1 = s(b v b') = s(b) + s(b') = 0 - - a  contradiction. [] 

Lemma 5.8. Let L be a quantum logic such that assumptions (2) and (3) 
of  Theorem 5.6 are fulfilled. Then for any a, b E L there is a d ~ L with 
d --< a, b such that the relative orthocomplements  o f  d in a and in b have 
zero infimum (d is a maximal element of  the set {e E L; e <-- a, b}). 

Proof Let us denote by S a countable unital set of  states on L. If  a / x  
b = 0, we can take d = 0. Let us suppose that the set L,,,h = {e E L; e --< 
a, b} is nonempty. Then, according to assumption (2), the set Sa,h = {s E 
S; s(a) = s(b) = 1 } is nonempty and countable. Let a state s~ on L be a ty- 
convex combinat ion (with nonzero coefficients) of  all s e Sa.b. According 
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to assumption (3), the state sl is Jauch-Pi ron .  Since sl(a) = st(b) = 1, there 
is a d E L,,,j~ such that s~(d) -- 1. Let us show now that there is no nonzero 
element e e L~,.b that is orthogonal to d. Indeed, for any nonzero e ~ La,b 
there is a state s~ ~ S,l,t, such that s~(e) = l; thus, s~(e) > 0 and e and d are 
not orthogonal. �9 

Proof of  Theorem 5.6. Let a, b ~ L. According to Lemma 5.8, there is 
a d E L with d -< a, b such that the relative or thocomplement  a~ of  d in a 
has a zero infimum with b. According to Lemma 5.8 again, there is an e 
L with e -< a~, b '  such that the relative or thocomplement  a2 of  e in al has 
a zero inf imum with b ' .  Thus, a2/x b --- 0 and a2/x b'  = 0 and, according 
to Lemma 5.7, a2 --- 0. Hence, al = e is orthogonal  to b and elements a, b 
are compatible. �9 

As the following examples show, none of  the conditions o f  Theorem 
5.6 can be omitted. 

Examples 5.9. 1. There is a countable quantum logic that it is not a 
Boolean algebra such that every state on it is J auch-P i ron  and the set of  
states is unital (Ovchinnikov, 1993). The assumptions (2) and (3) of  Theorem 
5.6 are fulfilled. 

2. There is a quantum logic such that every state on it is Jauch-P i ron  
and the set o f  two-valued states is full (Mtiller, 1993). The assumption (3) 
and, according to L e m m a  4.3, the assumption (1) o f  Theorem 5.6 are fulfilled. 

3. Let X~, X2, X3, X4 be mutually disjoint countable sets and let X = 
CJ~=I Xi. Let us put 

L' = {O, XI U X2, X 2 U X3, X 3 ~.J X4, X 4 U Xl,  X } 

L = { (A\F)  U (F\A);  F C X i s  finite a n d A  e L '}  

Then (L, C,  ", 13, X), where ~ denotes the set-theoretic complementat ion in 
X, is a quantum logic (the axioms can be easily verified) that is not a Boolean 
algebra (indeed, e.g., Xj U X2 and Xz (-J X3 are not compatible). Let us for 
any x ~ X define the state sx as follows: 

1, x ~ A ,  
sx(A) = 0, x ~ A, A ~ L 

It is easy to see that the set {sx; x ~ X} is a countable unital set of  two- 
valued Jauch-P i ron  states. Thus, the assumption (2) and, according to L e m m a  
4.3, the assumption (1) of  Theorem 5.6 are fulfilled. 

It should be noted that examples 5.9.1 and 5.9.2 are quite nontrivial and 
that other theorems of  the given type can be found in Pulmannovfi (1993). 

Let us finish with an open problem. 
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Problem 5.10. Find  a p rope r  def in i t ion  o f  " s u b a d d i t i v e  state" such that 

the unitat  (full,  resp.)  set o f  such states forces  a q u a n t u m  logic  to be  a 

B o o l e a n  algebra .  
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